Getting Started with ArmSoM-w3
Introduction
The ArmSoM-W3 single board computer is designed and developed by ArmSoM team for professional and enterprise users, powered by Rockchip RK3588 SoC quad ARM Cortex-A76 and quad Cortex-A55 consists of an eight-core CPU processor with dynamic frequency scaling up to 2.4GHz. Embedded high -performance 3D and 2D image acceleration module, AI accelerator NPU with a built -in 6 TOPS computing power.
ArmSoM-W3 up to 32GB 64bit LPDDR4X ram, up to 8K@60 HDMI OUT, HDMI IN, MIPI DSI, MIPI CSI, 3.5mm jack with mic, USB Port, 2.5GbE LAN, PCIe 3.0 x4, PCIe 2.0x2, 40-pin expansion header, RTC, POE, SD card, DC power, typec.
Get Started
Essentials You Need
Before starting to use your ArmSoM-W3 get the following items ready
- ArmSoM-W3
- power supply(choose one of three)
- 12 volt @2/3A via DC Power
- USB C PD Charger (15W & above)
- 12 volt PoE
- If you wish to boot from sd card:MicroSD Card/TF Card: Class 10 or Above, minimum 8GB SDHC
TF Cards We Tested
Refer to: TFCardsWeTested
PD Power Adapters We Tested
Refer to: PD Power Adapters We Tested
Configure parameters for serial port
Use the following serial parameters:
Baud rate | 1500000 |
Data bit | 8 |
Parity check | None |
Stop bit | 1 |
Flow control | None |
Install OS
Install OS to eMMC
Please check this guide, Install rockchip flash tools under Windows/Linux/MacOS PC.
Visit download link to download image files and utilities.
Image Files | |
armsom-w3-emmc-Android12-rkr12-20230420.img.xz | Android 12 image file, kernel version 5.10.y |
armsom-w3-emmc-AndroidTv12-rkr12-20230420.img.xz | Android TV image file, kernel version 5.10.y |
armsom-w3-emmc-buildroot-20230420.img.xz | buildroot, kernel version 5.10.y |
armsom-w3-emmc-debian-bullseye-xfce4-arm64-20230420.img.xz | debian bullseys xfce4, kernel version 5.10.y |
Install OS to TF
Please check this guide, Install rockchip tf tools under Windows/Linux.
Image Files | |
Armbian_23.05.0-trunk_Armsomw3_bullseye_legacy_5.10.110_gnome_desktop.img.xz | Armbian, debian 11, kernel 5.10, desktop |
Armbian_23.05.0-trunk_Armsomw3_bullseye_legacy_5.10.110.img.xz | Armbian, debian 11, kernel 5.10 |
Armbian_23.05.0-trunk_Armsomw3_bookworm_legacy_5.10.110_cinnamon_desktop.img | Armbian, debian 12, kernel 5.10, desktop |
Armbian_23.05.0-trunk_Armsomw3_bookworm_legacy_5.10.110.img | Armbian, debian 12, kernel 5.10 |
Armbian_23.05.0-trunk_Armsomw3_jammy_legacy_5.10.110_gnome_desktop.img.xz | Armbian, Ubuntu 22.04, kernel 5.10, desktop |
Armbian_23.05.0-trunk_Armsomw3_jammy_legacy_5.10.110.img.xz | Armbian, Ubuntu 22.04, kernel 5.10 |
Boot the board
- (Optional)if use SD Card boot,need into the socket on the board.
- (Optional) Use the USB to TTL serial cable to setup a connection between PC and ArmSoM-w3 board.
- Power on ArmSoM by adapter with type C port or PoE or DC power
- ArmSoM-w3 will boot with the green power LED on. And after a while, another blue LED starts blinking,red led user control
interface use
Access from the Host PC/Laptop
Option 1: HDMI monitor and Mouse
You can open the terminal on the HDMI display and enter commands on the keyboard.
Option 2: Serial console
See Serial Console
Option 3: ADB
Using the burning tool provided by RK, you can not see the line "Found an MSC device" at the bottom. Connect the computer to the development board using a USB-typeC cable. On the Windows page, use the combined key of "Windows+R" to open the command terminal and type adb shell to see "root@linaro-alip:/#".
LED
On ArmSoM-W3 three-color LED is configured as LED class device. When the blue LED is not active a green LED will show to indicate the board has power. You can control the behavior mode of the blue LED by writing to /sys/class/leds/blue:status/trigger. By default only root users can write to the device. The default mode of the blue LED is heartbeat.
linaro@linaro-alip:/home/linaro# sudo su // linaro password root@linaro-alip:/home/linaro# echo timer > /sys/class/leds/blue:status/trigger root@linaro-alip:/home/linaro# echo activity > /sys/class/leds/blue:status/trigger
You can use cat on the trigger property to list all the available LED modes. The value in brackets is the currently active mode.
root@linaro-alip:/home/linaro# cat /sys/class/leds/blue:status/trigger none rfkill-any rfkill-none kbd-scrolllock kbd-numlock kbd-capslock kbd-kanalock kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-altlock kbd-shiftllock kbd-shiftrlock kbd-ctrlllock kbd-ctrlrlock tcpm-source-psy-4-0022-online mmc2 mmc1 timer oneshot disk-activity disk-read disk-write ide-disk mtd nand-disk heartbeat backlight gpio cpu cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7 mmc0 [activity] default-on transient flash torch panic netdev rfkill0
In the None mode, writing to /sys/class/leds/blue:status/brightness can manually control the status of the blue LED.
root@linaro-alip:/home/linaro# echo none > /sys/class/leds/blue:status/trigger root@linaro-alip:/home/linaro# echo 1 > /sys/class/leds/blue:status/brightness root@linaro-alip:/home/linaro# echo 0 > /sys/class/leds/blue:status/brightness
red light is the same, class device /sys/class/leds/red:status/trigger
RTC Device
ArmSoM-w3 is equipped with one RTC IC hym8563
Firstly, plug in RTC battery to give power to RTC IC. Please note that we should keep the RTC battery in the RTC connector.
Secondly,Check whether the driver is successfully loaded.
root@linaro-alip:~# dmesg | grep rtc [ 3.149263] rtc-hym8563 6-0051: rtc information is valid [ 3.154624] rtc-hym8563 6-0051: registered as rtc0 [ 3.155646] rtc-hym8563 6-0051: setting system clock to 2021-01-01T12:00:05 UTC (1609502405)
Finally, check whether you can view and set the time.
root@linaro-alip:~# hwclock -r 2022-08-07 13:38:24.370866+00:00 root@linaro-alip:~# date 2022年 08月 07日 星期日 13:38:41 UTC root@linaro-alip:~# hwclock -w
Ethernet
ArmSoM-w3 is configured with one 2.5G Ethernet interface. You can connect ArmSoM-w3 to the network using a network cable (one end is connected to an external network port or a route). The ArmSoM-w3 automatically configures the network for your Internet access.
Check that the Ethernet is working by using the ifconfig command, which displays network card eth0 or enP4p65s0, along with the Ethernet IP address. In addition, you can use the ping tool to test network connectivity.
ifconfig
ping www.google.com
If the network cable is connected, no IP address is assigned to the node.
dhclient eth0 or dhclient enP4p65s0
WiFi/BT
ArmSoM-w3 doesn't come with on board WiFi/BT. Currently the following WiFi Cards are tested and supported by the ArmSoM-w3.
1. RTL8852BE
2. AP6256
To test the WIFI performance, we need to follow the steps:
# 1. Switch to super user mode root@linaro-alip:/# sudo su # 2. Open the WIFI root@linaro-alip:/# nmcli r wifi on # 3. Scan WIFI root@linaro-alip:/# nmcli dev wifi # 4. Connect to WIFI network root@linaro-alip:/# nmcli dev wifi connect "wifi_name" password "wifi_password"
Audio
View sound cards in the system.
root@linaro-alip:/# aplay -l **** List of PLAYBACK Hardware Devices **** card 0: rockchipdp0 [rockchip,dp0], device 0: rockchip,dp0 spdif-hifi-0 [rockchip,dp0 spdif-hifi-0] Subdevices: 1/1 Subdevice #0: subdevice #0 card 1: rockchipes8316 [rockchip-es8316], device 0: fe470000.i2s-ES8316 HiFi es8316.7-0011-0 [fe470000.i2s-ES8316 HiFi es8316.7-0011-0] Subdevices: 1/1 Subdevice #0: subdevice #0 card 3: rockchiphdmi0 [rockchip-hdmi0], device 0: rockchip-hdmi0 i2s-hifi-0 [rockchip-hdmi0 i2s-hifi-0] Subdevices: 1/1 Subdevice #0: subdevice #0 card 4: rockchiphdmi1 [rockchip-hdmi1], device 0: rockchip-hdmi1 i2s-hifi-0 [rockchip-hdmi1 i2s-hifi-0] Subdevices: 1/1 Subdevice #0: subdevice #0
Specify the sound card to play audio fiile.
aplay -D hw:0,0 /mnt/test.wav
MIC
root@linaro-alip:/root# arecord -D hw:1,0 -f S16_LE -t wav -c2 -r 16000 -d 3 t.wav Recording WAVE 't.wav' : Signed 16 bit Little Endian, Rate 16000 Hz, Stereo root@linaro-alip:/root# aplay t.wav Playing WAVE 't.wav' : Signed 16 bit Little Endian, Rate 16000 Hz, Stereo
Storage device
Supports three types of storage devices
microSD card
/dev/mmcblk1
eMMC
/dev/mmcblk0
NVME M.2 SDD
root@linaro-alip:/home/linaro# mkdir temp root@linaro-alip:/home/linaro# mount /dev/nvme0n1 temp
Camera
1. MIPI-CSI
The camera uses the IMX415 module,After the camera module is connected and powered on, you can view the startup log.
root@linaro-alip:/# dmesg | grep imx415 [ 2.547754] imx415 3-001a: driver version: 00.01.08 [ 2.547767] imx415 3-001a: Get hdr mode failed! no hdr default [ 2.547819] imx415 3-001a: Failed to get power-gpios [ 2.547826] imx415 3-001a: could not get default pinstate [ 2.547831] imx415 3-001a: could not get sleep pinstate [ 2.547850] imx415 3-001a: supply dvdd not found, using dummy regulator [ 2.547918] imx415 3-001a: supply dovdd not found, using dummy regulator [ 2.547945] imx415 3-001a: supply avdd not found, using dummy regulator [ 2.613843] imx415 3-001a: Detected imx415 id 0000e0 [ 2.613890] rockchip-csi2-dphy csi2-dphy0: dphy0 matches m00_b_imx415 3-001a:bus type 5 [ 18.386174] imx415 3-001a: set fmt: cur_mode: 3864x2192, hdr: 0 [ 18.389067] imx415 3-001a: set exposure(shr0) 2047 = cur_vts(2250) - val(203)
The kernel assigns device information description files to the camera.
grep "" /sys/class/video4linux/v*/name | grep mainpath /sys/class/video4linux/video11/name:rkisp_mainpath
Verify the functions of the camera
Grab a picture
# v4l2-ctl -d /dev/video11 --set-fmt-video=width=3840,height=2160,pixelformat=NV12 --stream-mmap=3 --stream-skip=60 --stream-to=/tmp/cif73.out --stream-count=3 --stream-poll
Display on desktop using gst-launch-1.0
# gst-launch-1.0 v4l2src device=/dev/video11 ! video/x-raw,format=NV12,width=3840,height=2160, framerate=30/1 ! xvimagesink
2. USB3.0 Camera
After connecting the usb3.0 camera, open the Qt V4L2 test Utility application for testing
Then open the video node: video21
Then click the camera button, you will see the camera screen
HDMI RX
The ArmSoM-w3 uses an hdmi_in port built into the rk3588 chip,You can use the v4l2 command to test the hdmi in interface.
View all video nodes
ls /dev/video*
Look for the rk hdmirx device
Run the v4l2-ctl -d command to specify the vidoe node. Run the -D command to view the node information. Check the rk_hdmirx device using the Driver name.
# v4l2-ctl -d /dev/video0 -D Driver Info: Driver name : rk_hdmirx Card type : rk_hdmirx Bus info : fdee0000.hdmirx-controller Driver version : 5.10.66 Capabilities : 0x84201000 Video Capture Multiplanar Streaming Extended Pix Format Device Capabilities Device Caps : 0x04201000 Video Capture Multiplanar Streaming Extended Pix Format
Query resolution and image format
To query the current resolution and image format:
# v4l2-ctl -d /dev/video17 --get-fmt-video Format Video Capture Multiplanar: Width/Height : 3840/2160 Pixel Format : 'NV16' Field : None Number of planes : 1 Flags : premultiplied-alpha, 000000fe Colorspace : Unknown (1025fcdc) Transfer Function : Unknown (00000020) YCbCr Encoding : Unknown (000000ff) Quantization : Default Plane 0 : Bytes per Line : 3840 Size Image : 16588800
Grab image file
Save the image file to the device, adb pull to the PC, and view it through 7yuv and other tools:
v4l2-ctl --verbose -d /dev/video17 \ --set-fmt-video=width=3840,height=2160,pixelformat='NV16' \ --stream-mmap=4 --stream-skip=3 \ --stream-to=/data/4k60_nv16.yuv \ --stream-count=5 --stream-poll
Querying the HDMI RX status
Query the current status of HDMI RX, including signal locking, image format, Timings information, Pixl Clk, etc.
# cat /d/hdmirx/status status: plugin Clk-Ch:Lock Ch0:Lock Ch1:Lock Ch2:Lock Ch0-Err:0 Ch1-Err:0 Ch2-Err:0 Color Format: YUV422 Store Format: YUV422 (8 bit) Mode: 3840x2160p60 (4400x2250) hfp:172 hs:92 hbp:296 vfp:8 vs:10 vbp:72 Pixel Clk: 594024000
FAN
echo 0 > /sys/devices/platform/fd8b0010.pwm/pwm/pwmchip*/export echo 10000 > /sys/devices/platform/fd8b0010.pwm/pwm/pwmchip*/pwm0/period echo 5000 > /sys/devices/platform/fd8b0010.pwm/pwm/pwmchip*/pwm0/duty_cycle echo inversed > /sys/devices/platform/fd8b0010.pwm/pwm/pwmchip*/pwm0/polarity echo 1 > /sys/devices/platform/fd8b0010.pwm/pwm/pwmchip*/pwm0/enable #echo 0 > /sys/devices/platform/fd8b0010.pwm/pwm/pwmchip*/pwm0/enable
Post your issue on the forum:forum.armsom.org
Others
NPU usage
Prepare tools
1. Use the Ubuntu18.04 / Ubuntu20.04 operating system (OS).
2. An W3-PRO board
Preparation procedure
First make sure you have docker installed on your Ubuntu system,If not, refer to the Internet installation tutorial
We provide the source code and the docker image of the installed environment:docker image
Create a rknpu folder on the PC server and copy the firmware to the folder
rknpu/rknn-toolkit2-1.4.0/docker$ ls md5sum.txt rknn-toolkit2-1.4.0-cp36-docker.tar.gz rknn-toolkit2-1.4.0-cp38-docker.tar.gz
Run the following command to run the docker image. After the Docker image is run, the bash environment of the image is displayed
docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb rknn-toolkit2:1.4.0-cp38 /bin/bash
Map examples code into a Docker environment by attaching "-v <host src folder>:<image dst folder>"Parameters, such as:
docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb -v /your/rknn-toolkit2-1.x.x/examples:/examples rknn-toolkit2:1.x.x /bin/bash
The code is synchronized after mapping
The rknn service needs to run on the development board
BOARD ARCH corresponds to the aarch64 directory on 64-bit Linux systems and to the armhf directory on 32-bit systems
1. adb push all files in Linux/rknn server/${B0ARD_ ARCH}/usr/bin/ to /usr/bin 2. adb push Linux/librknn api/${BOARD ARCH}/ librknrnt. so to /usr/1ib 3. Access the serial port terminal of the board and run the following command chmod +x /usr/bin/rknn server chmod +X /usr/bin/start_ rknn.sh chmod +X /usr/bin/restart rknn.sh restart_ rknn. sh
run program
Execute adb devices in the docker image first, remembering the adb ID number
Go to /examples/onnx/yolov5 and change test.py
ret = rknn.init_runtime(target='rk3588', device_id=DEVICE_ID, perf_debug=True,eval_mem=True) outputs = rknn.inference(inputs=[img]) ret = rknn.eval_perf(inputs=[img], is_print=True) cv2.imwrite("result.jpg", img_1)
The above four functions are not added
Run python3 test.py